Allergic rhinitis and pregnancy –
A Review of the literature, with recommendations for management

JW Loock, MB ChB, FCS (SA) OREL
Division of Otorhinolaryngology (ENT), Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa.

Reprinted from Current Allergy and Clinical Immunology 2009 March with kind permission

ABSTRACT
Key points
• The concurrence of allergic rhinitis and pregnancy is common.
• The diagnosis of allergic rhinitis is easily and reliably made, by eliciting the characteristic symptoms on history.
• This diagnosis is easily confirmed by using the radioallergosorbent test (RAST) or enzyme-linked immunosorbent assay (ELISA) tests.
• Nasal symptoms, particularly obstruction, are often aggravated in pregnancy, through several possible mechanisms.
• Untreated allergic rhinitis and nasal obstruction affect the quality of life and can impact on the lower airways particularly in the presence of asthma, and indeed on the pregnancy itself.
• The effective management of allergic rhinitis in pregnancy is thus important and can be undertaken in complete safety, and the pregnant patient should not be made to suffer the symptoms.
• Management should be tailored to the needs of the patient, and should be the minimum needed to control the condition.
• At present there is no intervention in pregnancy that has been shown to reduce the incidence of atopy in offspring.

Definition
Rhinitis may be defined as a condition of diffuse inflammation of the nasal respiratory mucosa characterized by one or more of the following nasal symptoms: congestion, rhinorrhoea, itch or sneezing.1 Allergic rhinitis occurs when this inflammation is IgE-mediated, following exposure to allergens.

Prevalence
While wide variations in reported prevalence exist, allergic rhinitis is acknowledged to be the most common allergic condition, affecting 10-25% of the population,2 is a global phenomenon, and appears to be increasing in prevalence.3,4 Given the common nature of the condition of pregnancy, clearly these conditions co-exist frequently!

Pregnancy and nasal problems
Clearly all nasal diseases can occur with the same frequency in pregnancy as they do in the non-pregnant population. While allergic rhinitis is a very common condition, the clinician must remember the other nasal conditions which can cause these nasal symptoms. Table I lists the differential diagnosis. Table II lists the predisposing causes of the subgroup of ‘non-allergic non-infectious rhinitis’.

It is however recognised that certain specific associations exist between pregnancy and nasal conditions. Congestion and inflammation of the nose (and sinuses) are recognised as occurring in pregnancy as a result of hormonal factors (see Table II). A persistent rhinosinusitis may accompany the last trimester of pregnancy, when the severity increases as the blood oestrogen level increases. Symptoms normally resolve shortly after delivery.

Infectious sinusitis seems to be increased in pregnancy and reportedly complicated as many as 1.5% of pregnancies, a six-fold increase over the frequency that was observed in a non-

Table I. Differential diagnosis of allergic rhinitis

| Infectious rhinosinusitis (nonspecific) |
| Specific rhinosinusitis |
| – tuberculosis (TB) |
| – sarcoid |
| – syphilis |
| – leprosy, etc. |
| Non-allergic non-infectious rhinitis (see Table II) |
| Mechanical nasal obstruction: |
| – deviated septum |
| – hypertrophic turbinates |
| Tumours: |
| – nose/nasopharynx |
| – benign (e.g. polyps)/malignant |
| Cerebrospinal fluid (CSF) rhinorrhoea |

Table II. Non-allergic non-infectious inflammation of the nose and sinuses

| Occupational |
| Non-allergic rhinitis with eosinophilia syndrome (NARES) |
| (like allergic rhinitis, but IgE levels and skin tests are normal) |
| Hormonal: puberty; pregnancy, menstrual, postmenopausal |
| Drug-induced: systemic: aspirin, NSAIDs, antihypertensives, etc. |
| Local: sympathomimetic overuse (rhinitis medicamentosa), cocaine |
| Irritants: pollution; air-conditioning; cold air |
| Food intolerance (Note: This is not true IgE-mediated allergy) |
| Emotional, probably autonomic mediated (stress, sexual (‘honeymoon rhinitis’)) |
| Atrophic rhinitis: primary or secondary |
| Gastro-oesophageal reflux |
| ‘Idiopathic rhinitis’ or ‘vasomotor rhinitis’, NSAIDs – nonsteroidal anti-inflammatory drugs. |
Pregnancy and allergic rhinitis

What, then, should the general practitioner and the specialist in obstetrics and gynaecology know about allergic rhinitis in pregnancy?

Diagnosis

The lay public too often labels all nasal symptomatology indiscriminately as ‘sinus’ or ‘hay fever’. A definite diagnosis should always be made for nasal symptoms. Fortunately, the diagnosis of allergic rhinitis is extremely easily and reliably made. The basis of diagnosing allergic rhinitis is the history, and the symptoms are remarkably accurate (Table III).

Examination is far less reliable, and identification of the classic ‘pale blue’ swollen, wet, inferior turbinates requires good lighting, while the dose of radiation from current spiral CT scans is far less than it used to be, and the fetus can theoretically be shielded, and occasionally surgery (cautery, injection or reduction of hypertrophied turbinates). The use of mast-cell stabilisers, e.g. sodium cromoglycate or leukotriene antagonists, has been found by most clinicians to be disappointing.

Allergen identification and avoidance

The identification of allergens and institution of allergen avoidance makes complete sense, and clearly puts the fetus at no risk. Symptoms of allergic rhinitis can be significantly mitigated by avoiding the allergen when this is possible. Local allergy societies often put out useful and convenient leaflets for doctors and patients.

No treatment and simple non-specific measures

There are times when, despite the diagnosis of allergic rhinitis, the symptoms are mild and no treatment is required. Nonspecific treatment measures may include the use of external nasal dilators, avoidance of irritants, and humidification. Nasal saline drops or sprays are a useful and safe option to help clear the nose, particularly before eating or sleeping.

Pharmacological intervention

Clearly it is a concern in pregnancy that the administration of systemic and even local pharmacotherapy might have a deleterious effect on the fetus. Caution is always advised when administering a drug to a pregnant woman, as most medications cross the placenta. The risk of fetal malformation represents a major fear and is highest during the first trimester, the time of most organogenesis. Fear of the possible teratogenicity of medication used for allergic rhinitis is largely based upon animal experiments and isolated associations in case reports. However medication is often avoided in pregnancy even when necessary, because of alarming information on drug labels or encountered in patient education. These cautions should be balanced against the fact that upper airway disease, if uncontrolled, has a significant, negative effect on quality of life, and several studies have shown that it can exacerbate coexisting asthma, which might in turn adversely affect the outcome of a pregnancy. Furthermore, nasal obstruction may affect the pregnant mother’s eating, sleeping and emotional well-being, which indirectly could adversely affect pregnancy. For example, rhinitis during pregnancy may cause significant upper airway obstruction during sleep, which has been associated with pregnancy-induced hypertension and intrauterine growth retardation. Medication is therefore indicated based on an exact clinical diagnosis, when the benefit of the drug outweighs risk, and when the drugs are carefully chosen and appropriately administered. Under these circumstances, risk should be negligible. In 1979 the US Food and Drug Administration (FDA) published a drug classification system to assist in understanding the risk of any specific drug. It has five pregnancy precaution categories: A, B, C, D and X (Table IV).

Table IV. Food and Drug Administration format for labelling human prescription drugs

<table>
<thead>
<tr>
<th>Category</th>
<th>Description of risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Well-controlled human studies have failed to demonstrate risk to the fetus.</td>
</tr>
<tr>
<td>B</td>
<td>Either animal studies show no fetal risk and no human data are available, or animal studies show a risk but human studies do not show fetal risk.</td>
</tr>
<tr>
<td>C</td>
<td>Either animal studies indicate a fetal risk and there are no controlled studies in humans, or there are no available studies in humans or animals.</td>
</tr>
<tr>
<td>D</td>
<td>Studies show fetal risk in humans, but potential benefits may outweigh the potential risk in certain situations.</td>
</tr>
<tr>
<td>X</td>
<td>Studies in animals or humans, or based on human experience show definite fetal risk.</td>
</tr>
</tbody>
</table>

PNT Sep/Oct 2009 Vol. 13 No. 5
Glucocorticosteroids
Systemic glucocorticosteroids are teratogenic in animals. The principal malformations are cleft lip and palate, and cardiovascular malformation. Systemic steroids are generally used by otorhinolaryngologists as short courses to unblock the nose quickly at the start of treatment or as somewhat more prolonged courses for very severe symptoms during the hay fever season.

The hormonal side-effects of prolonged administration even in the nonpregnant patient are widely accepted as precluding such use. Prolonged systemic corticosteroids in pregnant women have been implicated in growth retardation and pre-eclampsia. Although the evidence for their teratogenic effects in pregnancy in humans is poor, concerns exist about possible increased risk of cleft lip or palate in the first trimester.

It would seem sensible to avoid even these short courses of systemic corticosteroids in pregnancy, whenever possible – certainly in the first trimester. The small concentrations of corticosteroids passed by the lactating mother to the infant present no substantial threat.

Inhaled glucocorticosteroids, by contrast, have been extensively used by pregnant women who have asthma, and have not been incriminated in teratogenicity in humans. Various studies have shown that high drug concentrations can be achieved at receptor sites in the nasal mucosa, with minimal risk of systemic adverse effects as the amount of systemic absorption of nasal steroid sprays is negligible. Inhaled corticosteroids are extremely effective particularly for nasal obstruction in allergic rhinitis.

Large retrospective studies have suggested that topical corticosteroids may play a role in reducing the risk of asthma exacerbation. A review of the use of budesonide in pregnancy showed no risk to the fetus in 6 600 pregnancies. In a randomised, double-blind, placebo-controlled study that looked at the efficacy of fluticasone propionate nasal spray in pregnancy, no effects on the outcomes of the pregnancies were found.

Based on their efficacy, their limited systemic absorption, and the existing studies, nasal steroid sprays would seem to be a logical approach towards the outer wall of your nasal passage. DO NOT SNIFF DEEPLY.

Leukotriene modifiers
These drugs therefore carry an FDA category C rating. The limited data available suggest that their use should be limited to severe nasal congestion interfering with sleep, only when really required, preferably after the first trimester and not during labour.

Leukotriene modifiers
The use of leukotriene modifiers, e.g. zileuton, montelukast and zafirlukast, cannot be supported because of lack of evidence on their safety and the existence of more effective agents with more data on human gestational safety.

Mast-cell stabilisers
Mast-cell stabilisers, e.g. sodium cromoglycate, are virtually not absorbed by mucosal surfaces, and considered entirely safe, but, as stated previously, are far less effective than nasal steroids. No teratogenic effect has been found in animals and no adverse effect shown in humans. They carry an FDA category B rating.

Anticholinergic agents
Intranasal ipratropium bromide is poorly absorbed by the nasal mucosa, has no record of teratogenicity in animal studies, and appears safe. However, while it is effective in controlling watery nasal discharge, it does not affect nasal obstruction or other symptoms, which limits its usefulness, and adequate studies in humans are lacking.

Allergen-specific immunotherapy
Allergen-specific immunotherapy (SIT, 'hyposensitisation') or

Antihistamines
Antihistamines are effective for the irritating symptoms of watery rhinorrhea, itch and sneezing, but have until recently been considered to have little or no effect on nasal congestion. The latest agents claim to be more effective for congestion. Antihistamines for nasal symptoms need to be taken systemically, so clearly, safety of the fetus must be considered. While some first-generation antihistamines were shown to be teratogenic in animals, a meta-analysis of 200 000 first-trimester exposures to first-generation antihistamines failed to show increased teratogenic risk in humans, and they are rated FDA category B. The newer second-generation antihistamines which have less central sedation than their predecessors have been less well studied. Isolated reports of teratogenicity in animal models and the possibility of hypospadias in human offspring raised concerns, but follow-up studies dispelled these concerns and a cohort of 2 147 women exposed to loratadine did not show risk of major congenital malformations.

Data from the Swedish Medical Birth Registry showed no increased incidence of congenital malformations in 917 exposures to cetirizine in pregnancy.

Decongestants
Sympathomimetic vasoconstrictor agents are not specific for allergic rhinitis, but at times are used in nasal congestion for short-term relief. Their prolonged use, particularly topically, may lead to tachyphylaxis, rebound congestion and 'rhinitis medicamentosa'. Oral decongestants are sometimes used alone, and at times in combination with antihistamines. Most oral decongestants are teratogenic in animals. Pseudoephedrine use in the first trimester has been implicated in an increased incidence of gastrochisis.

It carries an FDA category C rating. It can be considered after the first trimester when the danger of gastrochisis has passed. There are no specific data available concerning the use of decongestants during lactation. Pseudoephedrine does pass into the breast milk. It is recommended that only short-acting forms (e.g. phenylephrine) be used, and taken just after breastfeeding to minimise the concentration in breast milk.

Topical nasal decongestants (nasal or ophthalmic).

While it would seem logical that these are safer than oral agents, there are no adequate studies on the safety of administration. These drugs therefore carry an FDA category C rating. The limited data available suggest that their use should be limited to severe nasal congestion interfering with sleep, only when really required, preferably after the first trimester and not during labour.

Leukotriene modifiers
The use of leukotriene modifiers, e.g. zileuton, montelukast and zafirlukast, cannot be supported because of lack of evidence on their safety and the existence of more effective agents with more data on human gestational safety.

Mast-cell stabilisers
Mast-cell stabilisers, e.g. sodium cromoglycate, are virtually not absorbed by mucosal surfaces, and considered entirely safe, but, as stated previously, are far less effective than nasal steroids. No teratogenic effect has been found in animals and no adverse effect shown in humans. They carry an FDA category B rating.

Anticholinergic agents
Intranasal ipratropium bromide is poorly absorbed by the nasal mucosa, has no record of teratogenicity in animal studies, and appears safe. However, while it is effective in controlling watery nasal discharge, it does not affect nasal obstruction or other symptoms, which limits its usefulness, and adequate studies in humans are lacking.

Allergen-specific immunotherapy
Allergen-specific immunotherapy (SIT, 'hyposensitisation') or
Factors in pregnancy influencing the incidence of allergic rhinitis in offspring

There are several publications in the literature examining the possibility that fetal exposure in utero might translate into subsequent atopy. Possible influencing factors studied included: previous use of oral contraceptives; maternal occupation; maternal respiratory infection; smoking exposure; caesarean section delivery; dietary supplementation; and maternal dietary antigen avoidance during pregnancy and/or lactation. Most of these articles represent low levels of evidence (level 3 and poorer). However a Cochrane review of the effect of maternal dietary antigen avoidance during pregnancy and lactation concluded that this is unlikely to reduce the child's risk of atopic diseases and that such a diet may adversely affect fetal and/or maternal nutrition.46

Conclusion

This article attempts to review the current evidence used in the literature on allergic rhinitis and pregnancy, in the hope of assisting clinicians in treating patients who require treatment in confidence and safety. The reference list includes other worthwhile reviews, which have been marked thus.34, 39, 48

Declaration of conflict of interest

The author declares no conflict of interest.

References

23. The author declares no conflict of interest.